Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell Mol Life Sci ; 80(9): 277, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668682

RESUMO

BACKGROUND: The tightly controlled balance between osteogenic and adipogenic differentiation of human bone marrow-derived stromal cells (BMSCs) is critical to maintain bone homeostasis. Age-related osteoporosis is characterized by low bone mass with excessive infiltration of adipose tissue in the bone marrow compartment. The shift of BMSC differentiation from osteoblasts to adipocytes could result in bone loss and adiposity. METHODS: TNS3 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of TNS3 was used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining at multiple time points. The role of TNS3 and its domain function in osteogenic differentiation were evaluated by ALP activity, calcium assay, and Alizarin Red S staining. The expression of Rho-GTP was determined using the RhoA pull-down activation assay. RESULTS: Loss of TNS3 impaired osteogenic differentiation of BMSCs but promoted adipogenic differentiation. Conversely, TNS3 overexpression hampered adipogenesis while enhancing osteogenesis. The expression level of TNS3 determined cell shape and cytoskeletal reorganization during osteogenic differentiation. TNS3 truncation experiments revealed that for optimal osteogenesis to occur, all domains proved essential. Pull-down and immunocytochemical experiments suggested that TNS3 mediates osteogenic differentiation through RhoA. CONCLUSIONS: Here, we identify TNS3 to be involved in BMSC fate decision. Our study links the domain structure in TNS3 to RhoA activity via actin dynamics and implicates an important role for TNS3 in regulating osteogenesis and adipogenesis from BMSCs. Furthermore, it supports the critical involvement of cytoskeletal reorganization in BMSC differentiation.


Assuntos
Adipogenia , Osteogênese , Tensinas , Humanos , Actinas , Adipogenia/genética , Diferenciação Celular , Osteogênese/genética , Tensinas/genética
2.
Stem Cell Res Ther ; 14(1): 126, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170285

RESUMO

BACKGROUND: Recent evidence suggests that accumulation of marrow adipose tissue induced by aberrant lineage allocation of bone marrow-derived mesenchymal stromal cells (BMSCs) contributes to the pathophysiologic processes of osteoporosis. Although master regulators of lineage commitment have been well documented, molecular switches between osteogenesis and adipogenesis are largely unknown. METHODS: HSPB7 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of HSPB7 and its deletion constructs were used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining. ALP activity, calcium assay, Alizarin Red S staining and Oil Red O staining were performed in vitro during osteoblast or adipocyte differentiation. SB431542 and Activin A antibody were used to identify the mechanism of Activin A in the regulation of osteogenic differentiation in BMSCs. RESULTS: In this study, we identified HSPB7 capable of oppositely regulating osteogenic and adipogenic differentiation of BMSCs. HSPB7 silencing promoted adipogenesis while reducing osteogenic differentiation and mineralization. Conversely, overexpression of HSPB7 strongly enhanced osteogenesis, but no effect was observed on adipogenic differentiation. Deletion of the N-terminal or C-terminal domain of HSPB7 led to decreased osteoblastic potency and mineralization. Mechanistically, our data showed that Activin A is a downstream target participating in HSPB7 knockdown-mediated osteogenic inhibition. CONCLUSIONS: Our findings suggest that HSPB7 plays a positive role in driving osteoblastic differentiation, and with the capability in maintaining the osteo-adipogenesis balance. It holds great promise as a potential therapeutic target in the treatment of bone metabolic diseases.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Osteogênese , Proteínas de Choque Térmico HSP27/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas
3.
Gene ; 851: 146928, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36191822

RESUMO

Bone formation is controlled by histone modifying enzymes that regulate post-translational modifications on nucleosomal histone proteins and control accessibility of transcription factors to gene promoters required for osteogenesis. Enhancer of Zeste homolog 2 (EZH2/Ezh2), a histone H3 lysine 27 (H3K27) methyl transferase, is a suppressor of osteoblast differentiation. Ezh2 is regulated by SET and MYND domain-containing protein 2 (SMYD2/Smyd2), a lysine methyltransferase that modifies both histone and non-histone proteins. Here, we examined whether Smyd2 modulates Ezh2 suppression of osteoblast differentiation. Musculoskeletal RNA-seq data show that SMYD2/Smyd2 is the most highly expressed SMYD/Smyd member in human bone tissues and mouse osteoblasts. Smyd2 loss of function analysis in mouse MC3T3 osteoblasts using siRNA depletion enhances proliferation and calcium deposition. Loss of Smyd2 protein does not affect alkaline phosphatase activity nor does it result in a unified expression response for standard osteoblast-related mRNA markers (e.g., Bglap, Ibsp, Spp1, Sp7), indicating that Smyd2 does not directly control osteoblast differentiation. Smyd2 protein depletion enhances levels of the osteo-suppressive Ezh2 protein and H3K27 trimethylation (H3K27me3), as expected from increased cell proliferation, while elevating the osteo-inductive Runx2 protein. Combined siRNA depletion of both Smyd2 and Ezh2 protein is more effective in promoting calcium deposition when compared to loss of either protein. Collectively, our results indicate that Smyd2 inhibits proliferation and indirectly the subsequent mineral deposition by osteoblasts. Mechanistically, Smyd2 represents a functional epigenetic regulator that operates in parallel to the suppressive effects of Ezh2 and H3K27 trimethylation on osteoblast differentiation.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Lisina , Camundongos , Animais , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , RNA Interferente Pequeno/metabolismo , Cálcio/metabolismo , Domínios MYND , Osteoblastos/metabolismo , Histonas/metabolismo , Proliferação de Células/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
4.
Acta Biomater ; 151: 346-359, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995408

RESUMO

A functional vascular system is a prerequisite for bone repair as disturbed angiogenesis often causes non-union. Paracrine factors released from human bone marrow derived mesenchymal stromal cells (BMSCs) have angiogenic effects on endothelial cells. However, whether these paracrine factors participate in blood flow dynamics within bone capillaries remains poorly understood. Here, we used two different microfluidic designs to investigate critical steps during angiogenesis and found pronounced effects of endothelial cell proliferation as well as chemotactic and mechanotactic migration induced by BMSC conditioned medium (CM). The application of BMSC-CM in dynamic cultures demonstrates that bioactive factors in combination with fluidic flow-induced biomechanical signals significantly enhanced endothelial cell migration. Transcriptional analyses of endothelial cells demonstrate the induction of a unique gene expression profile related to tricarboxylic acid cycle and energy metabolism by the combination of BMSC-CM factors and shear stress, which opens an interesting avenue to explore during fracture healing. Our results stress the importance of in vivo - like microenvironments simultaneously including biochemical, biomechanical and oxygen levels when investigating key events during vessel repair. STATEMENT OF SIGNIFICANCE: Our results demonstrate the importance of recapitulating in vivo - like microenvironments when investigating key events during vessel repair. Endothelial cells exhibit enhanced angiogenesis characteristics when simultaneous exposing them to hMSC-CM, mechanical forces and biochemical signals simultaneously. The improved angiogenesis may not only result from the direct effect of growth factors, but also by reprogramming of endothelial cell metabolism. Moreover, with this model we demonstrated a synergistic impact of mechanical forces and biochemical factors on endothelial cell behavior and the expression of genes involved in the TCA cycle and energy metabolism, which opens an interesting new avenue to stimulate angiogenesis during fracture healing.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Microfluídica , Neovascularização Fisiológica , Oxigênio/farmacologia
5.
Front Endocrinol (Lausanne) ; 13: 1017832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589834

RESUMO

Several physiological and pathological conditions such as aging, obesity, diabetes, anorexia nervosa are associated with increased adipogenesis in the bone marrow. A lack of effective drugs hinder the improved treatment for aberrant accumulation of bone marrow adipocytes. Given the higher costs, longer duration and sometimes lack of efficacy in drug discovery, computational and experimental strategies have been used to identify previously approved drugs for the treatment of diseases, also known as drug repurposing. Here, we describe the method of small molecule-prioritization by employing adipocyte-specific genes using the connectivity map (CMap). We then generated transcriptomic profiles using human mesenchymal stromal cells under adipogenic differentiation with the treatment of prioritized compounds, and identified emetine and kinetin-riboside to have a potent inhibitory effect on adipogenesis. Overall, we demonstrated a proof-of-concept method to identify repurposable drugs capable of inhibiting adipogenesis, using the Connectivity Map.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Adipócitos , Transcriptoma
6.
Front Endocrinol (Lausanne) ; 12: 731217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938269

RESUMO

The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Doenças Musculoesqueléticas/genética , Animais , Animais Geneticamente Modificados , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/tendências , Humanos , Modelos Animais , Herança Multifatorial/genética , Doenças Musculoesqueléticas/metabolismo , Doenças Musculoesqueléticas/patologia , Fenótipo , Locos de Características Quantitativas , Integração de Sistemas , Estudos de Validação como Assunto
7.
Eur J Med Genet ; 64(6): 104224, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33866005

RESUMO

This article reviews the development of research in the field of craniosynostosis from a bibliometric standpoint. Craniosynostosis is a malformation occurring during the early development of the skull, when one or more of the sutures close too early, causing problems with normal brain and skull growth. Research in this field has developed from early clinical case descriptions, to genetic discoveries responsible for the occurring malformations and onwards to developing sophisticated surgical treatment. In this article we describe these developments, zoom in on publication trends and characteristics and visualize developing networks and topic shifts in this research field.


Assuntos
Bibliometria , Pesquisa Biomédica/tendências , Craniossinostoses/genética , Genética Médica/estatística & dados numéricos , Craniossinostoses/diagnóstico , Craniossinostoses/terapia , Humanos , Publicações Periódicas como Assunto/tendências
8.
Front Bioeng Biotechnol ; 9: 640419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718342

RESUMO

Recently, we and others have illustrated that extracellular vesicles (EVs) have the potential to support hematopoietic stem and progenitor cell (HSPC) expansion; however, the mechanism and processes responsible for the intercellular communication by EVs are still unknown. In the current study, we investigate whether primary human bone marrow derived mesenchymal stromal cells (BMSC) EVs isolated from two different origins, fetal (fEV) and adult (aEV) tissue, can increase the relative low number of HSPCs found in umbilical cord blood (UCB) and which EV-derived components are responsible for ex vivo HSPC expansion. Interestingly, aEVs and to a lesser extent fEVs, showed supportive ex vivo expansion capacity of UCB-HSPCs. Taking advantage of the two BMSC sources with different supportive effects, we analyzed the EV cargo and investigated how gene expression is modulated in HSPCs after incubation with aEVs and fEVs. Proteomics analyses of the protein cargo composition of the supportive aEV vs. the less-supportive fEV identified 90% of the Top100 exosome proteins present in the ExoCarta database. Gene Ontology (GO) analyses illustrated that the proteins overrepresented in aEVs were annotated to oxidation-reduction process, mitochondrial ATP synthesis coupled proton transport, or protein folding. In contrast, the proteins overrepresented in fEVs were annotated to extracellular matrix organization positive regulation of cell migration or transforming growth factor beta receptor (TGFBR) signaling pathway. Small RNA sequencing identified different molecular signatures between aEVs and fEVs. Interestingly, the microRNA cluster miR-99b/let-7e/miR-125a, previously identified to increase the number of HSPCs by targeting multiple pro-apoptotic genes, was highly and significantly enriched in aEVs. Although we identified significant differences in the supportive effects of aEVs and fEVs, RNAseq analyses of the 24 h treated HSPCs indicated that a limited set of genes was differentially regulated when compared to cells that were treated with cytokines only. Together, our study provides novel insights into the complex biological role of EVs and illustrates that aEVs and fEVs differentially support ex vivo expansion capacity of UCB-HSPCs. Together opening new means for the application of EVs in the discovery of therapeutics for more efficient ex vivo HSPC expansion.

9.
Stem Cells Dev ; 30(6): 325-336, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33593128

RESUMO

Bone marrow-derived mesenchymal stem/stromal cells (BMSCs) are fundamental to bone regenerative therapies, tissue engineering, and postmenopausal osteoporosis. Donor variation among patients, cell heterogeneity, and unpredictable capacity for differentiation reduce effectiveness of BMSCs for regenerative cell therapies. The cell surface glycoprotein CD24 exhibits the most prominent differential expression during osteogenic versus adipogenic differentiation of human BMSCs. Therefore, CD24 may represent a selective biomarker for subpopulations of BMSCs with increased osteoblastic potential. In undifferentiated human BMSCs, CD24 cell surface expression is variable among donors (range: 2%-10%) and increased by two to fourfold upon osteogenic differentiation. Strikingly, FACS sorted CD24pos cells exhibit delayed mineralization and reduced capacity for adipocyte differentiation. RNAseq analysis of CD24pos and CD24neg BMSCs identified a limited number of genes with increased expression in CD24pos cells that are associated with cell adhesion, motility, and extracellular matrix. Downregulated genes are associated with cell cycle regulation, and biological assays revealed that CD24pos cells have reduced proliferation. Hence, expression of the cell surface glycoprotein CD24 identifies a subpopulation of human BMSCs with reduced capacity for proliferation and extracellular matrix mineralization. Functional specialization among BMSCs populations may support their regenerative potential and therapeutic success by accommodating cell activities that promote skeletal tissue formation, homeostasis, and repair.


Assuntos
Biomarcadores/metabolismo , Antígeno CD24/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Glicoproteínas de Membrana/genética , Células-Tronco Mesenquimais/metabolismo , Adipogenia/genética , Antígeno CD24/metabolismo , Células Cultivadas , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/genética , RNA-Seq/métodos , Fatores de Tempo
10.
Sci Rep ; 10(1): 18988, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149200

RESUMO

Learning rules by which cell shape impacts cell function would enable control of cell physiology and fate in medical applications, particularly, on the interface of cells and material of the implants. We defined the phenotypic response of human bone marrow-derived mesenchymal stem cells (hMSCs) to 2176 randomly generated surface topographies by probing basic functions such as migration, proliferation, protein synthesis, apoptosis, and differentiation using quantitative image analysis. Clustering the surfaces into 28 archetypical cell shapes, we found a very strict correlation between cell shape and physiological response and selected seven cell shapes to describe the molecular mechanism leading to phenotypic diversity. Transcriptomics analysis revealed a tight link between cell shape, molecular signatures, and phenotype. For instance, proliferation is strongly reduced in cells with limited spreading, resulting in down-regulation of genes involved in the G2/M cycle and subsequent quiescence, whereas cells with large filopodia are related to activation of early response genes and inhibition of the osteogenic process. In this paper we were aiming to identify a universal set of genes that regulate the material-induced phenotypical response of human mesenchymal stem cells. This will allow designing implants that can actively regulate cellular, molecular signalling through cell shape. Here we are proposing an approach to tackle this question.


Assuntos
Técnicas de Cultura de Células/instrumentação , Perfilação da Expressão Gênica/métodos , Células-Tronco Mesenquimais/citologia , Adipogenia , Diferenciação Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Análise de Sequência de RNA , Transdução de Sinais , Propriedades de Superfície
11.
FASEB J ; 34(4): 5435-5452, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086861

RESUMO

Osteolineage cell-derived extracellular vesicles (EVs) play a regulatory role in hematopoiesis and have been shown to promote the ex vivo expansion of human hematopoietic stem and progenitor cells (HSPCs). Here, we demonstrate that EVs from different human osteolineage sources do not have the same HSPC expansion promoting potential. Comparison of stimulatory and non-stimulatory osteolineage EVs by next-generation sequencing and mass spectrometry analyses revealed distinct microRNA and protein signatures identifying EV-derived candidate regulators of ex vivo HSPC expansion. Accordingly, the treatment of umbilical cord blood-derived CD34+ HSPCs with stimulatory EVs-altered HSPC transcriptome, including genes with known roles in cell proliferation. An integrative bioinformatics approach, which connects the HSPC gene expression data with the candidate cargo in stimulatory EVs, delineated the potentially targeted biological functions and pathways during hematopoietic cell expansion and development. In conclusion, our study gives novel insights into the complex biological role of EVs in osteolineage cell-HSPC crosstalk and promotes the utility of EVs and their cargo as therapeutic agents in regenerative medicine.


Assuntos
Diferenciação Celular , Linhagem da Célula , Vesículas Extracelulares/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Osteoblastos/citologia , Antígenos CD34/metabolismo , Proliferação de Células , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Osteoblastos/metabolismo , Transcriptoma
12.
J Cell Physiol ; 235(5): 4865-4877, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31667867

RESUMO

Activins regulate bone formation by controlling osteoclasts and osteoblasts. We investigated Activin-A mechanism of action on human osteoblast mineralization, RNA and microRNA (miRNA) expression profile. A single 2-day treatment of Activin-A at Day 5 of osteoblast differentiation significantly reduced matrix mineralization. Activin A-treated osteoblasts responded with transient change in gene expression, in a 2-wave-fashion. The 38 genes differentially regulated during the first wave (within 8 hr after Activin A start) were involved in transcription regulation. In the second wave (1-2 days after Activin A start), 65 genes were differentially regulated and related to extracellular matrix. Differentially expressed genes in both waves were associated to transforming growth factor beta signaling. We identified which microRNAs modulating osteoblast differentiation were regulated by Activin-A. In summary, 2-day treatment with Activin-A in premineralization period of osteoblast cultures influenced miRNAs, gene transcription, and reduced matrix mineralization. Modulation of Activin A signaling might be useful to control bone quality for therapeutic purposes.


Assuntos
Ativinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Transformada , Matriz Extracelular/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Fosforilação , Transdução de Sinais , Vírus 40 dos Símios , Proteína Smad3/metabolismo , Fatores de Tempo , Transcriptoma
13.
Cytotechnology ; 72(1): 37-45, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31728801

RESUMO

Bone marrow derived mesenchymal stromal cells (BMSCs) are multipotent progenitors of particular interest for cell-based tissue engineering therapies. However, one disadvantage that limit their clinical use is their heterogeneity. In the last decades a great effort was made to select BMSC subpopulations based on cell surface markers, however there is still no general consensus on which markers to use to obtain the best BMSCs for tissue regeneration. Looking for alternatives we decided to focus on a probe-based method to detect intracellular mRNA in living cells, the SmartFlare technology. This technology does not require fixation of the cells and allows us to sort living cells based on gene expression into functionally different populations. However, since the technology is available it is debated whether the probes specifically recognize their target mRNAs. We validated the TWIST1 probe and demonstrated that it specifically recognizes TWIST1 in BMSCs. However, differences in probe concentration, incubation time and cellular uptake can strongly influence signal specificity. In addition we found that TWIST1high expressing cells have an increased expansion rate compared to TWIST1low expressing cells derived from the same initial population of BMSCs. The SmartFlare probes recognize their target gene, however for each probe and cell type validation of the protocol is necessary.

14.
Front Immunol ; 10: 1504, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379807

RESUMO

Autoimmune diseases are characterized by an aberrantly activated immune system, resulting in tissue damage and functional disability in patients. An important therapeutic goal is to restore the deregulated immunological balance between pro- and anti-inflammatory T cells. This imbalance is illustrated by elevated levels and activity of memory Th17 cell populations, such as Th17, Th1/Th17, and Th17.1 cells, in various autoimmune diseases. These cells are characterized by the chemokine receptor CCR6, RORC expression and production of IL-17A, IFNγ, and TNFα. Using rheumatoid arthritis (RA) as a model of autoimmune disease, we here demonstrate that pro-inflammatory memory CCR6+ Th cells can switch into anti-inflammatory cells with regulatory capacity using the active vitamin D metabolite 1,25(OH)2D3. Memory CCR6+ Th cells, excluding Tregs, were sorted from healthy controls or treatment-naïve patients with early rheumatoid arthritis (RA) and cultured with or without 1,25(OH)2D3. Treatment with 1,25(OH)2D3 inhibited pro-inflammatory cytokines such as IL-17A, IL-17F, IL-22 and IFNγ in memory CCR6+ Th cells from both healthy controls and RA patients. This was accompanied by induction of anti-inflammatory factors, including IL-10 and CTLA4. Interestingly, these formerly pathogenic cells suppressed proliferation of autologous CD3+ T cells similar to classical Tregs. Importantly, the modulated memory cells still migrated toward inflammatory milieus in vitro, modeled by RA synovial fluid, and retained their suppressive capacity in this environment. These data show the potential to reset the pathogenic profile of human memory Th cells into non-pathogenic cells with regulatory capacity.


Assuntos
Anti-Inflamatórios/imunologia , Memória Imunológica/imunologia , Células Th17/imunologia , Vitamina D/imunologia , Adulto , Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Complexo CD3/imunologia , Células Cultivadas , Feminino , Humanos , Interleucinas/imunologia , Masculino , Pessoa de Meia-Idade , Receptores CCR6/imunologia , Fator de Necrose Tumoral alfa/imunologia
15.
Sci Rep ; 9(1): 9099, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235713

RESUMO

Human mesenchymal stem (hMSCs) are defined as multi-potent colony-forming cells expressing a specific subset of plasma membrane markers when grown on flat tissue culture polystyrene. However, as soon as hMSCs are used for transplantation, they are exposed to a 3D environment, which can strongly impact cell physiology and influence proliferation, differentiation and metabolism. Strategies to control in vivo hMSC behavior, for instance in stem cell transplantation or cancer treatment, are skewed by the un-physiological flatness of the standard well plates. Even though it is common knowledge that cells behave differently in vitro compared to in vivo, only little is known about the underlying adaptation processes. Here, we used micrometer-scale defined surface topographies as a model to describe the phenotype of hMSCs during this adaptation to their new environment. We used well established techniques to compare hMSCs cultured on flat and topographically enhanced polystyreneand observed dramatically changed cell morphologies accompanied by shrinkage of cytoplasm and nucleus, a decreased overall cellular metabolism, and slower cell cycle progression resulting in a lower proliferation rate in cells exposed to surface topographies. We hypothesized that this reduction in proliferation rate effects their sensitivity to certain cancer drugs, which was confirmed by higher survival rate of hMSCs cultured on topographies exposed to paclitaxel. Thus, micro-topographies can be used as a model system to mimic the natural cell micro-environment, and be a powerful tool to optimize cell treatment in vitro.


Assuntos
Adaptação Fisiológica , Células-Tronco Mesenquimais/citologia , Idoso , Ciclo Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Paclitaxel/farmacologia , Fenótipo , Propriedades de Superfície
16.
J Cell Physiol ; 234(3): 2984-2996, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30058720

RESUMO

The extracellular matrix (ECM) physically supports cells and influences stem cell behaviour, modulating kinase-mediated signalling cascades. Cell-derived ECMs have emerged in bone regeneration as they reproduce physiological tissue-architecture and ameliorate mesenchymal stromal cell (MSC) properties. Titanium scaffolds show good mechanical properties, facilitate cell adhesion, and have been routinely used for bone tissue engineering (BTE). We analyzed the kinomic signature of human MSCs in adhesion to an osteopromotive osteoblast-derived ECM, and compared it to MSCs on titanium. PamChip kinase-array analysis revealed 63 phosphorylated peptides on ECM and 59 on titanium, with MSCs on ECM exhibiting significantly higher kinase activity than on titanium. MSCs on the two substrates showed overlapping kinome profiles, with activation of similar signalling pathways (FAK, ERK, and PI3K signalling). Inhibition of PI3K signalling in cells significantly reduced adhesion to ECM and increased the number of nonadherent cells on both substrates. In summary, this study comprehensively characterized the kinase activity in MSCs on cell-derived ECM and titanium, highlighting the role of PI3K signalling in kinomic changes regulating osteoblast viability and adhesion. Kinome profile analysis represents a powerful tool to select pathways to better understand cell behaviour. Osteoblast-derived ECM could be further investigated as titanium scaffold-coating to improve BTE.


Assuntos
Regeneração Óssea/genética , Matriz Extracelular/genética , Osteogênese/genética , Fosfotransferases/genética , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Adesão Celular/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Engenharia Tecidual , Titânio/farmacologia
17.
Tissue Eng Part A ; 24(17-18): 1377-1389, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29667532

RESUMO

Efficient osteogenic differentiation of mesenchymal stromal cells (MSCs) is crucial to accelerate bone formation. In this context, the use of extracellular matrix (ECM) as natural 3D framework mimicking in vivo tissue architecture is of interest. The aim of this study was to generate a devitalized human osteogenic MSC-derived ECM and to investigate its impact on MSC osteogenic differentiation to improve MSC properties in bone regeneration. The devitalized ECM significantly enhanced MSC adhesion and proliferation. Osteogenic differentiation and mineralization of MSCs on the ECM were quicker than in standard conditions. The presence of ECM promoted in vivo bone formation by MSCs in a mouse model of ectopic calcification. We analyzed the ECM composition by mass spectrometry, detecting 846 proteins. Of these, 473 proteins were shared with the human bone proteome we previously described, demonstrating high homology to an in vivo microenvironment. Bioinformatic analysis of the 846 proteins showed involvement in adhesion and osteogenic differentiation, confirming the ECM composition as key modulator of MSC behavior. In addition to known ECM components, proteomic analysis revealed novel ECM functions, which could improve culture conditions. In summary, this study provides a simplified method to obtain an in vitro MSC-derived ECM that enhances osteogenic differentiation and could be applied as natural biomaterial to accelerate bone regeneration.


Assuntos
Osso e Ossos/metabolismo , Matriz Extracelular/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Proteoma/metabolismo , Animais , Osso e Ossos/citologia , Calcificação Fisiológica , Diferenciação Celular , Linhagem Celular , Cerâmica , Vidro , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos NOD , Camundongos SCID , Osteoblastos/citologia
18.
J Cell Physiol ; 233(6): 4895-4906, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29194609

RESUMO

Osteoporosis is a common skeletal disorder characterized by low bone mass leading to increased bone fragility and fracture susceptibility. Identification of factors influencing osteoblast differentiation and bone formation is very important. Previously, we identified parbendazole to be a novel compound that stimulates osteogenic differentiation of human mesenchymal stromal cells (hMSCs), using gene expression profiling and bioinformatic analyzes, including the Connectivity Map (CMap), as an in-silico approach. The aim for this paper is to identify additional compounds affecting osteoblast differentiation using the CMap. Gene expression profiling was performed on hMSCs differentiated to osteoblasts using Illumina microarrays. Our osteoblast gene signature, the top regulated genes 6 hr after induction by dexamethasone, was uploaded into CMap (www.broadinstitute.org/cmap/). Through this approach we identified compounds with gene signatures positively correlating (withaferin-A, calcium folinate, amylocaine) or negatively correlating (salbutamol, metaraminol, diprophylline) to our osteoblast gene signature. All positively correlating compounds stimulated osteogenic differentiation, as indicated by increased mineralization compared to control treated cells. One of three negatively correlating compounds, salbutamol, inhibited dexamethasone-induced osteoblastic differentiation, while the other two had no effect. Based on gene expression data of withaferin-A and salbutamol, we identified HMOX1 and STC1 as being strongly differentially expressed . shRNA knockdown of HMOX1 or STC1 in hMSCs inhibited osteoblast differentiation. These results confirm that the CMap is a powerful approach to identify positively compounds that stimulate osteogenesis of hMSCs, and through this approach we can identify genes that play an important role in osteoblast differentiation and could be targets for novel bone anabolic therapies.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Diferenciação Celular/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/genética , Diferenciação Celular/genética , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/metabolismo , Osteogênese/genética , Mapas de Interação de Proteínas , Transdução de Sinais/efeitos dos fármacos
19.
J Cell Physiol ; 233(1): 387-395, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28272740

RESUMO

The extracellular matrix (ECM) is a dynamic component of tissue architecture that physically supports cells and actively influences their behavior. In the context of bone regeneration, cell-secreted ECMs have become of interest as they reproduce tissue-architecture and modulate the promising properties of mesenchymal stem cells (MSCs). We have previously created an in vitro model of human osteoblast-derived devitalized ECM that was osteopromotive for MSCs. The aim of this study was to identify ECM regulatory proteins able to modulate MSC differentiation to broaden the spectrum of MSC clinical applications. To this end, we created two additional models of devitalized ECMs with different mineralization phenotypes. Our results showed that the ECM derived from osteoblast-differentiated MSCs had increased osteogenic potential compared to ECM derived from undifferentiated MSCs and non-ECM cultures. Proteomic analysis revealed that structural ECM proteins and ribosomal proteins were upregulated in the ECM from undifferentiated MSCs. A similar response profile was obtained by treating osteoblast-differentiating MSCs with Activin-A. Extracellular proteins were upregulated in Activin-A ECM, whereas mitochondrial and membrane proteins were downregulated. In summary, this study illustrates that the composition of different MSC-secreted ECMs is important to regulate the osteogenic differentiation of MSCs. These models of devitalized ECMs could be used to modulate MSC properties to regulate bone quality.


Assuntos
Calcificação Fisiológica , Diferenciação Celular , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese , Proteômica/métodos , Ativinas/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Massas , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fenótipo , Proteínas Ribossômicas/metabolismo , Fatores de Tempo
20.
Nat Commun ; 8(1): 121, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743860

RESUMO

Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone mineral density (TBLH-BMD) regions in 10,414 children. The estimated SNP heritability is 43% (95% CI: 34-52%) for TBLH-BMD, and 39% (95% CI: 30-48%) for TB-LM, with a shared genetic component of 43% (95% CI: 29-56%). We identify variants with pleiotropic effects in eight loci, including seven established bone mineral density loci: WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5. Variants in the TOM1L2/SREBF1 locus exert opposing effects TB-LM and TBLH-BMD, and have a stronger association with the former trait. We show that SREBF1 is expressed in murine and human osteoblasts, as well as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass.Bone mineral density and lean skeletal mass are heritable traits. Here, Medina-Gomez and colleagues perform bivariate GWAS analyses of total body lean mass and bone mass density in children, and show genetic loci with pleiotropic effects on both traits.


Assuntos
Proteínas de Transporte/genética , Pleiotropia Genética , Estudo de Associação Genômica Ampla/métodos , Metanálise como Assunto , Desenvolvimento Musculoesquelético/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Peso Corporal , Densidade Óssea , Criança , Feminino , Expressão Gênica , Humanos , Masculino , Análise Multivariada , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...